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Abstract

A quantitative micromechanics-based analysis on the role of microstructure and constituent properties in the
overall behavior of shape memory alloy (SMA) composite is carried out in the present work. The composite consists

of ductile matrix and SMA second phase inclusions. The macroscopic constitutive relations of the composite are
established by using self-consistent approach where the micro±macro correlation is realized by volume averaging
and by introducing the concept of stress and strain concentration tensors. In this micromechanics modeling, the

internal stress and strain in both matrix and SMA and their evolution are derived as function of externally applied
thermomechanical loading as well as the degree of phase transformation in SMA. As an application of the present
theory in the microstructural design of this novel composite, the constitutive response of composites with spherical

SMA particulate embedded in two di�erent elastoplastic matrixes under uniaxial tension is calculated. The obtained
results demonstrate several interesting deformation features of the new composite, which are expected to have
potential applications in the future. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Shape memory alloys (SMAs) have recently attracted interest in the ®eld of composite materials and
have been proposed as sensors and large strain actuators for use in intelligent composites and structures.
This is because SMAs have native ability to undergo reversible thermoelastic martensitic phase
transformation under external thermomechanical loading. SMAs, when in the form of wires, short
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®bers, particulates or thin ®lms, can be embedded into or hybridized with a host material to form an
SMA composite. The design concept of an `intelligent SMA composite' has been recently proposed. Its
aim is to realize smart composites by `intelligent' distribution of SMA within the matrix material and
control the thermomechanical behavior of SMA through heating and cooling. So far, some fundamental
techniques in manufacturing and metallurgical treatment have been developed, and prototype SMA
composite materials have been manufactured and tested. The potential applications of embedded SMAs
include controlling external shape, sti�ness, damage, vibration, buckling and damping properties of the
composites (Birman, 1997).

Increasing e�ort has been made in the manufacturing and processing of the SMA composites by
embedding SMA into either elastic or ductile matrix (see Rogers, 1990; Paine and Rogers, 1991; Bidaux
et al., 1995; Hamada et al., 1997; Lee et al., 1997) and some research has been done to understand and
model the constitutive behavior of SMA composite with elastic matrix (Boyd and Lagoudas, 1994;
Lagoudas et al., 1994; Sottos and Kline, 1996; Stalmans et al., 1997). In these works, quantitative
understanding of the interaction between the embedded SMA and the matrix is one of the critical
factors in the microstructure design of the composites. In developing such materials it is a key issue to
have a precise correlation among the evolution of the internal stress and strain state, the externally
applied thermomechanical loading, microstructure and the constituent properties. For example, in order
to create a favorable residual stress ®eld in both matrix and SMA and also a desired macroscopic
behavior, one has to select the constitutive and microstructure parameters properly so that an optimum
microstructure design can be realized. To date, most prototype SMA composites are designed and
fabricated based on an empirical approach or simple calculations. Systematic and quantitative
investigation on how to make `intelligent' use of thermomechanical properties of SMAs and matrix
materials by using a microstructure-based micromechanics approach has not been available in the
literature. Without doubt, such an investigation will be more comprehensive and be helpful for the
composite microstructure design.

This paper aims to establish a micromechanics-based modeling on the constitutive behavior of the
SMA composite with elastoplastic matrix. In Section 2 the constitutive behavior of the elastoplastic
matrix and SMA are ®rst described. A generalized overall-local relationship is established in Section 3.
This type of micro±macro correlation is realized by volume averaging and by introducing the concepts
of stress and strain concentration tensors. The concentration tensors are determined by a self-consistent
approach. The constitutive relations for di�erent microstructures under general loading conditions are
formulated. In Section 4 the constitutive model is applied to calculate the constitutive response and
internal stress and strain evolution of two di�erent elastoplastic matrixes composites respectively. The
obtained results are discussed and distinct features of this type of composites are identi®ed. As a ®rst
step in the investigation, the thermal expansion of two phases is neglected and the focus is on the
mechanical aspects of the problem only.

2. The constitutive behavior of matrix and SMAs

The two-phase composite considered in this paper consists of an elastoplastic ductile matrix phase
(with a superscript `M' in all related quantities throughout the paper) and an elastoplastic second phase
SMA inclusions (all related quantities with a superscript `I' throughout the paper). In SMA the
`plasticity' is due to martensitic transformation only. Perfect bonding is assumed between the two
phases. The SMA particulates may have a given distribution in the matrix (such as unidirectional
distribution). Fig. 1 illustrates the Representative Volume Element (RVE) of the composite. The volume
fraction of the SMA is denoted by f. Throughout this paper, Sij and ÇS ij denote macroscopic externally
applied stress tensor and its rate, Eij and _Eij denote macroscopic externally applied strain tensor and its
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rate, sij and _s ij denote microscopic stress tensor and its rate, eij and _e ij denote microscopic (or local)
total strain tensor and its rate and etr

ij and _e tr
ij denote transformation strain tensor and its rate in SMA.

2.1. Constitutive behavior of matrix

The ductile matrix materials considered here are assumed to be homogeneous and their response are
time independent. The rate form of the constitutive relations under small strain condition can be
described by

_s ij � CM
ijkl

ÿ
_ekl ÿ _ep

kl

� �1�

where CM
ijkl is elastic tensor, _ep

ij is plastic strain rate. By using the tangent modulus tensor lM
ijkl, eqn (1)

can also be expressed as

_s ij � lM
ijkl_ekl �2�

The plastic strain rate can be determined through plasticity theory. For the ductile materials described
by the Ludwick type yielding function

se � s y
e � hM

ÿ
ep

e

�n �3�

the plastic strain rate can be derived as

_ep
ij � Z

9sdijs
d
kl

4H Ms2e
_skl �4�

and if elastic property of material is isotropic, the tangent modulus tensor lM
ijkl can be expressed as

lM
ijkl � CM

ijkl ÿ Z
9
ÿ
mM
�2
sd
ijs

d
klÿ

H M � 3mM
�
s2e

�5�

where

se

 
se �

�
3

2
sd
ijs

d
ij

�1
2

, sd
ij � sij ÿ skk

3
dij

!

Fig. 1. Schematic of the constitutive element of the composite.
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is the Von Mises equivalent stress, s y
e is the initial Von Mises yield stress, ep

e�ep
e �

�
_ep

edt,
_ep

e ��2=3 _ep
ij_e

p
ij �1=2� is the accumulated e�ective plastic strain, both hM and n are the hardening parameters,

mM is the elastic shear modulus, and Z is the loading parameter (Z � 0 for elastic unloading and Z � 1 for
plastic loading), HM � dse=dep

e .

2.2. Constitutive behavior of shape memory alloys

The constitutive relations of SMA can generally be given by

sij � l I
ijkl

ÿ
ekl ÿ etr

kl

� �6�

where l I
ijkl is the elastic modulus tensor, etr is the total transformation strain of SMA. For most SMA

materials, l I
ijkl is the function of temperature T and martensite volume fraction z in SMA. Then rate

form of eqn (6) can be written as

_sij � l I
ijkl

�
_ekl ÿ _etr

kl � _Qkl

�
�7�

where

_Qij �
�
l I
ijmn

�ÿ1�@ l I
mnkl

@z
_z � @ l

I
mnkl

@T
_T

�ÿ
ekl ÿ etr

kl

� �8�

The evolution of variables _z and _etr
ij can be derived from the constitutive models of speci®c SMAs (see

Section 4). There has been a signi®cant amount of research dedicated to the modeling within the last ten
years for several practically used polycrystalline SMAs. The reader is referred to the following for
exhaustive description: (1) phenomenological macroscopic constitutive model (Tanaka et al., 1986; Liang
and Rogers, 1990; Raniecki et al., 1992; Bekker and Brinson, 1997); (2) constitutive model based on
micromechanics mean ®eld theory (Patoor et al., 1988; Sun and Hwang, 1993; Boyd and Lagoudas,
1996; Song et al., 1997; Lu and Weng, 1997); (3) thermoelastic theory of phase transition and its
applications to SMA (Falk, 1980; Muller and Xu, 1991; Abeyaratne and Knowles, 1993; Bhattacharya,
1993).

Generally, the rate constitutive equations for both matrix and SMA can be formulated in a uni®ed
form

_sij � lijkl
ÿ
_ekl ÿ _e�kl

� �9�

where elastoplastic tangent modulus lijkl � lM
ijkl and eigen strain _e�ij � 0 for matrix, and lijkl � l I

ijkl and
_e�ij � _e tr

ij ÿ _Qij for SMA.

3. Micromechanics constitutive modeling of the composite

From a micromechanics point of view, the modeling of heterogeneous materials is extensively based
on the averaging operations using the original Eshelby's solution of the ellipsoidal inhomogeneity
(Eshelby, 1957). The most prominent model is the self-consistent approximation where the interactions
among various kinds of inhomogeneities of ®nite volume concentrations are approximately taken into
account by embedding the inhomogeneities in a medium with e�ective thermomechanical properties.
Originally, the self-consistent approximation has been introduced to describe the elastoplastic behavior
of polycrystalline materials with two di�erent approaches: (1) the Kroner (1958a, 1958b, 1961) and

M. Cherkaoui et al. / International Journal of Solids and Structures 37 (2000) 1577±15941580



Budiansky and Wu (1962) approach (KBW approach); in this approach the elementary problem of
inclusion±matrix interaction is solved by taking the di�erence of plastic strain between the inclusion and
the surrounding matrix as the Eshelby stress free strain. As a consequence the constraint power of the
matrix during the plastic deformation of the inhomogeneity remains constant and therefore the internal
stresses are over estimated. (2) The Hill (1965a, 1965b, 1967) approach where the problem is treated
incrementally by using the elastoplastic tangent modulus. The constraint power of the matrix depends
on the tangent modulus of the matrix and therefore weakens during the plastic deformation. In general,
the Hill self-consistent approximation shows a better accuracy (Hutchinson, 1970) in describing the
behavior of polycrystalline materials and thus can be used for any incremental calculations. In case of
proportional loading, Berveiller and Zaoui (1976) developed a self-consistent approximation by using
the secant modulus of the polycrystal to describe the weakening constraint power of the matrix and a
good approximation is obtained. The self-consistent approximation has been applied with success to
describe the plasticity under complex loading path and elastoplastic behavior at large strain (Beradai et
al., 1987; Lipinski and Berveiller, 1989).

For composite materials, the Mori±Tanaka (1973) method has been widely used due to its simplicity
in deriving the overall elastic and elastoplastic behavior (Benviniste, 1987; Tandon and Weng, 1988;
Weng, 1990). Christensen (1990) made a critical evaluation for di�erent micromechanics models. In
present work, the Hill's approach is used to derive the constitutive law of the composite.

3.1. Choice of the independent variables

Once the microstructure and the constitutive law of each constituent are given, one can determine the
global behavior of the composite. There are several choices in formulating the macroscopic constitutive
relations of the composite. For example, the incremental stress±strain relations can be written either in
the form of

ÇSij � ~Lijkl
_Ekl �10�

or

ÇSij � Cijkl

�
_Ekl ÿ _E

p

kl

�
�11�

where ~Lijkl is the overall tangent modulus tensor of the composite, Cijkl is the overall elastic tensor.
However the calculated result (or the accuracy) strongly depends on the choice of the independent
variables. As discussed above, the KBW or the elastic modulus version, eqn (11), will lead to an over
estimation of the internal stresses, so here the tangent modulus version, eqn (10), is adopted but is
expressed in the form of

ÇSij � Lijkl

�
_Ekl ÿ _E

�
kl

�
�12�

where Lijkl is the elastoplastic tangent modulus tensor of the composite and E �kl is the macroscopic eigen
strain tensor. The purpose of introducing _E

�
kl is just to emphasize the role of transformation in the

composite behavior. Also, eqn (12) is consistent in form with the local constitutive law, eqn (9), for both
SMA and matrix. The dependence of _E

�
kl on _e�kl will be given in the following.

3.2. Global-local relationships and determination of concentration tensor

For heterogeneous material the determination of the overall e�ective properties requires three steps.
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(i) The homogenization and localization which link the local stress and strain ®elds to the overall
applied stress or strain by introducing the corresponding concentration tensors. After an adequate
averaging scheme, the overall e�ective properties of the heterogeneous material are given as the
functions of these concentration tensors. (ii) The introduction of a homogeneous equivalent matrix to
replace the real inhomogeneous matrix. (iii) The evaluation of concentration tensors through a self-
consistent method.

3.2.1. Homogenization and localization
The micro±macro or local-global transition generally consists of two aspects: homogenization (micro-

4 macro-) and localization (macro- 4 micro-). It is well known that the overall (or macroscopic) strain
and stress rates are respectively the mean values of local strain and stress rates over the RVE of the
material.

_Eij �


_e ij�r�

�
V

�13�

ÇS ij �


_sij�r�

�
V

�14�

Inversely the local strain and stress rates at any point inside the constitutive element are related to the
macroscopic strain and stress rates applied on the boundary of the element by the following forms

_e ij�r� � Aijkl�r� _Ekl � aij�r� �15�

_s ij�r� � Bijkl�r� ÇSkl � bij�r� �16�
where Aijkl and Bijkl are respectively the fourth order strain and stress concentration tensors which take
into account the heterogeneity of the tangent modulus while aij�r� and bij�r� are the corresponding
second order tensors to take account of the heterogeneity of the transformation strain rate inside the
material. In general Aijkl�r� and aij�r� (also Bijkl�r� and bij�r�) are not independent to each other because
of the coupling e�ect between plasticity and phase transformation (Cherkaoui et al., 1995; Fischer et al.,
1996). Substituting eqns (15) and (16) into eqns (13) and (14) leads to the following equations

_Eij �


Aijkl�r�

�
V

_Ekl �


aij�r�

�
V

�17�

ÇSij �


Bijkl�r�

�
V

ÇSkl �


bij�r�

�
V

�18�

Because the above equations are valid for any ÇSij and _Eij, we must have the following conditions on
Aijkl�r�, aij�r�, Bijkl�r� and bij�r�


Aijkl�r�
�
V
� 
Bijkl�r�

�
V
� Iijkl �19�



aij�r�

�
V
� 
bij�r��V � 0 �20�

On the other hand, substituting eqns (15) and (16) into eqn (9) and comparing with eqn (12), one can
get the following relations among Aijkl�r�, aij�r�, Bijkl�r� and bij�r�:

Bijkl�r� � lijmn�r�Amnpq�r�Lÿ1pqkl �21�
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bij�r� � lijmn�r�Amnpq�r� _E
�
pq � lijmn�r�amn�r� ÿ lijmn�r�_e�mn�r� �22�

Using hBijkliV � Iijkl the average of eqn (21) over V gives the elastoplastic tangent modulus of composite
as function of the local elastoplastic tangent modulus and the concentration tensor:

Lijkl �


lijmn�r�Amnkl�r�

�
V

�23�

In the same way, hbij�r�iV � 0 gives the macroscopic transformation strain rate _E
�
ij as

_E
�
ij � Lÿ1ijkl



lklmn�r�_e�mn�r� ÿ lklmn�r�amn�r�

�
V

�24�

3.2.2. Transition from a real composite to an equivalent composite
In order to simplify the calculation, an equivalent homogeneous matrix is normally introduced, in

almost all self-consistent evaluations of the overall behavior of composites, to replace the real
inhomogeneous matrix where the tangent modulus are nonuniform (Fig. 2). The equivalency is built up
on the condition that after replacement the overall behavior of the equivalent composite is the same as
the original composite. Then the local stress rates become

_sij�r� � _sij � lijkl
ÿ
_ekl ÿ _e�kl

� �25�

If we denote the volumes of SMA inclusions and ductile matrix by V I and V M, and the volume fraction
of the SMA by f, eqn (23) can be written as

Lijkl � �1ÿ f�lM
ijmn



Amnkl�r�

�
VM � fl I

ijmn



Amnkl�r�

�
V I �26�

By using eqns (19) and (20), eqns (26) and (24) can be expressed as

Lijkl � lM
ijkl � f

�
l I
ijmn ÿ lM

ijmn

�

Amnkl�r�

�
V I �27�

_E
�
ij � Lÿ1ijkl

h
fl I

klmn



_e�mn�r�

�
V I ÿ f

ÿ
l I
klmn ÿ lM

klmn

�

amn�r�

�
V I

i
�28�

Fig. 2. Schematic of transition from a `real' (a) composite to an `equivalent' composite (b).
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It should be noted that the relationships established in this section are general and are independent of
the choice of micromechanical models used to obtain the concentration tensors in the sub-section 3.2.3.

3.2.3. Self-consistent scheme for the determination of concentration tensors
From eqns (27) and (28), it is apparent that the determination of the overall behavior of the

composite requires the average value of strain concentration tensor in the SMA inclusions. By using the
self-consistent method the concentration tensors are derived as (see Appendix A for detailed derivation)



Aijkl�r�

�
V I �

�h
Iijkl � Sijmn�r�Lÿ1mnpq

�
l I
pqkl ÿ Lpqkl

�iÿ1�
V I

�29�



Aijkl�r�

�
VM �

�h
Iijkl � Sijmn�r�Lÿ1mnpq

�
lM
pqkl ÿ Lpqkl

�iÿ1�
VM

�30�



aij�r�

�
V I �

D
Aijkl�r�Sklmn�r�Lÿ1mnpq

h
l I
pqrs_e

�
rs�r� ÿ Lpqrs

_E
�
rs

iE
V I

�31�



aij�r�

�
VM � ÿ



Aijkl�r�Sklmn�r�

�
VM

_E
�
mn �32�

where Sklmn�r� is the Eshelby tensor. It is noted that the above equation has the same form as the one
derived for multiphase elastic media by Dvorak and Benveniste (1992).

In case of spherical inclusions or unidirectional distributed spheroids of the identical shape, the
Eshelby tensor Sijmn is constant (independent of the position), eqns (29)±(32) are simpli®ed as

AI
ijkl �



Aijkl�r�

�
V I �

h
Iijkl � SijmnL

ÿ1
mnpq

�
l I
pqkl ÿ Lpqkl

�iÿ1 �33�

AM
ijkl �



Aijkl�r�

�
VM �

h
Iijkl � SijmnL

ÿ1
mnpq

�
lM
pqkl ÿ Lpqkl

�iÿ1 �34�

aI
ij � AI

ijklSklmnL
ÿ1
mnpq

�
l I
pqrs_e

�
rs ÿ Lpqrs

_E
�
rs

�
�35�

aM
ij � ÿAM

ijklSklmn
_E
�
mn �36�

_E
�
ij � fLÿ1ijkl A

I
mnkl l

I
mnab_e�ab �37�

Thus the constitutive framework of the smart composite has been established by the self-consistent
approach. By using above relations, the constitutive response of the composite can be directly computed
through iteration.

After the matrix begins to yield, its elastoplastic tangent modulus tensor lM
ijkl is generally not isotropic.

Therefore, the elastoplastic tangent modulus of composite Lijkl will be anisotropic and must be obtained
through the iteration of eqns (27) and (33). It must be noticed that Eshelby's tensor Sijkl is related to the
Lijkl and then must be calculated by numerical integral. Once the Lijkl, Sijkl, A

M
ijkl, and AI

ijkl are
determined, the macroscopic response of composite and the evolution of internal stress, strain and
transformation can be evaluated from eqns (15), (16), (25) and (35)±(37).
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4. Application to the spherical SMA inclusions

As an application of above model, we consider the case of a composite with spherical second phase
SMA. The composite is loaded by uniaxial tension under constant temperature at which the SMA
exhibits only superelastic behavior. The constitutive equations of ductile matrix are given by eqns (2)±(5)
in Section 2.1. For SMAs, the relation given in eqns (6)±(8) is for the general cases. Most experimental
data (Patoor et al., 1988; Muller and Xu, 1991; Lin et al., 1994; 1996; Shaw and Kyriakids, 1995)
showed that the slopes of the two elastic branches of the superelastic stress±strain curve of SMAs have
not much di�erence. So normally we can assume that the elastic properties of martensite and parent
phase are the same, thus lIijkl in eqn (6) becomes constant under isothermal loading condition. This
assumption is just for the simplicity in calculation. It would not a�ect the present micromechanics
model if the elastic tensors of the two phases were quite di�erent (see the derivation of Section 3).
About the thermal behavior of the SMA composite, generally it is a complicated process that depends
on the heat transfer conditions as well as the loading rates and is out of the scope of this paper.
However it is helpful to notice that the change in temperature comes from two major sources. One is the
external applied heating or cooling, another is the self-heating and self-cooling due to the
transformation latent heat (Shaw and Kyriakides, 1997). The response of SMA composite under
uniform temperature change was studied recently by the authors (Song et al., 1999).

The evolution of transformation is macroscopically similar to that of plastic strain in perfect plasticity
of metals (Lin et al., 1994; 1996; Shaw and Kyriakides, 1995). So the transformation condition can be
expressed as

sI
e �

(
sy�I�e
�T� for forward transformation

syre�I�
e
�T� for reverse transformation

�38�

where sI
e is Von Mises equivalent stress in SMA. The transformation strain rate _etr

ij can be expressed as
(Boyd and Lagoudas, 1994; Song et al., 1998)

_etr
ij � _e� �

8<: dlsd�I�
ij for forward transformation

dlreetr
ij for reverse transformation

�39�

where sd�I�
ij is deviatoric stress in SMA, dl and dlre are proportional factors and must be determined by

the consistency condition below. Rewriting formulae (37) and (35) by the simple form

_E
�
ij � Dijkl_etr

kl �40�

aI
ij � F I

ijkl_e
tr
kl �41�

at each loading step SÇij, the averaged stress increment in SMA can be obtained from eqns (9), (15) and
(41) as

_s I
ij � lIijkl

�
AI

klmnL
ÿ1
mnpq

ÇSpq �Hklmn_e tr
mn

�
�42�

where

Hijkl � AI
ijmnDmnkl � F I

ijkl ÿ Iijkl �43�
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By the consistency conditions for forward and reverse transformation yielding equations, the
proportional factors dl and dlre can be calculated as:

dl � ÿs
d�I�
ij lIijklA

I
klmnL

ÿ1
mnpq

ÇSpq

sd�I�
ij lIijklHklmnsd�I�

mn

�44�

dlre � ÿs
d�I�
ij lIijklA

I
klmnL

ÿ1
mnpq

ÇSpq

sd�I�
ij lIijklHklmnetr

mn

�45�

The response of the composite under uniaxial tensile loading is calculated for two typical cases. One is
ductile aluminum matrix with higher elastic modulus and yield stress than SMA, another case is the soft
matrix where both modulus and yield stress are lower than SMA.

The material properties used for SMA are (Lin et al., 1994; 1996; Shaw and Kyriakides, 1995):
E= 60 GPa, m � 22:5 GPa, sy

e � 100 MPa and syre
e � 80 MPa at room temperature, maximum

equivalent transformation strain �etr
e �max � 6%, volume fraction of SMA in composite f � 20%.

Macroscopic applied stresses S33 6� 0 and other Sij � 0.

4.1. Case IÐaluminum matrix with spherical SMA particulates

The material constants used for alumimum are: Young's modulus E= 70 GPa, m � 27 GPa,
s y

e � 245 MPa, h = 85 MPa, n = 0.2 (Hamada et al., 1997). Fig. 3, respectively, shows the individual
uniaxial tensile stress±strain curves for the composite, aluminum alone and SMA alone during a
uniaxial tensile loading-unloading cycle. From Figs. 3±5, the start and ®nish of the transformation in
SMA and the plastic yielding of matrix can be identi®ed. When SMA inclusions begin to transform
while matrix still continues to deform elastically, the deviation of macroscopic response from linearity is
quite small. Once the matrix enters plastic deformation the composite exhibits obvious plastic ¯ow and
the macroscopic yield stress level of composite is lower than that of matrix alone because of the earlier
transformation yielding of SMA. Following this ®rst stage of overall plastic ¯ow the composite begins
its second stage hardening (the uprising branch bc of the stress strain curve) when transformation is
exhausted (SMA returns to elastic response). While this second stage hardening is similar to that of the

Fig. 3. The axial stress strain curves of composite, aluminum and SMA under uniaxial tension.
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traditional ductile metal matrix composite reinforced by hard elastic inclusions, it could not be observed
in composite with ductile non-SMA metal inclusions. The above two-stage behavior of the SMA
composite during loading process is due to the fact that SMA inclusions act like ordinary metal
inclusions during transformation and act like elastic inclusions when transformation is ®nished.
Moreover, the results for the non-SMA particulate metal matrix composite can be obtained by assigning
a very large value to the transformation strain in the present model.

From Fig. 5 it is seen that a small amount of compressive stress is produced in matrix (about 15
MPa) after unloading, this is due to the partial reverse transformation of SMA during unloading (after
unloading most part of the SMA is still martensite). The most signi®cant reinforcement happens in the
subsequent heating process where all martensite will transform into parent phase and large amount of
compressive stress is produced in the matrix (Hamada et al., 1997; Song et al., 1999). This compressive
stress can be relaxed by the forward transformation of SMA, which happens when the composite is
cooled. Thus by cooling and heating, the internal stress in both matrix and SMA can be controlled. This
is the most distinguished deformation mechanism of SMA composite compared with those of traditional
composites.

Fig. 5. The evolution of axial stress in aluminum matrix and SMA inclusions.

Fig. 4. The evolution of e�ective stress in aluminum matrix and SMA inclusions.
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4.2. Case IIÐsoft matrix with spherical SMA particulates

Contrary to aluminum matrix, here we select another type of ductile materials such as polymers as the
matrix whose elastic modulus and yield stress are lower than SMA. The typical material constants for
the soft matrix are: Young's modulus E= 2.9 GPa, m � 1:115 GPa, sy

e � 20 MPa, h = 80 MPa,
n = 0.5. Fig. 6, respectively, shows the individual uniaxial tensile stress±strain curves for the composite,
matrix alone and SMA alone during a uniaxial tensile loading±unloading cycle. Compared with case I,
it is seen that both macroscopic yield stress and elastic modulus of the composite is higher than matrix
because harder SMA has strengthening e�ect on the composite. Similar to case I, during unloading
process a compressive axial stress is built up in matrix due to partial reverse transformation (Figs. 7 and
8). Also, the most signi®cant compressive stress in the matrix will be developed by the subsequent
heating (Song et al., 1999).

The two examples studied above mainly are concerned with the e�ect of matrix and SMA properties
on the overall performance of the composite. Though the obtained results are limited to the spherical

Fig. 7. The evolution of e�ective stress in soft matrix and SMA inclusions.

Fig. 6. The axial stress strain curves of composite, soft matrix and SMA under uniaxial tension.
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shape, the potential of this micromechanics modeling in characterizing the constitutive behavior of the
composite and further in microstructure design to obtain a desired material performance has been
demonstrated. A systematic study of the e�ects of temperature and microstructure such as shape,
volume fraction and the orientation of SMA inclusions on the macroscopic as well as the internal stress
and strain development will be given elsewhere (Song et al., 1999).

5. Conclusions

By using self-consistent approach the constitutive behavior of SMA composite with ductile matrix is
investigated. A micromechanics-based quantitative understanding of the role of microstructure and
constituent properties in the overall behavior is achieved. Such understanding is based on micro±macro
correlations established in this paper and makes it possible to predict the internal stress and strain
development in both matrix and SMAs during an externally applied thermomechanical loading process.
As a consequence of present research, the microstructure e�ect such as shape, volume fraction and
orientation, mechanical properties of the SMA inclusions and matrix, as well as the e�ect of applied
stress and temperature on the overall behavior of the composite can be quantitatively characterized. The
theoretical formulations obtained are general and can be used for both brittle and ductile matrix
composite systems. The model is applied to two kinds of composites with spherical SMA particulates. It
is believed that the present study can serve as a starting point in the microstructure design of this type
of intelligent composites in the future.
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Fig. 8. The evolution of axial stress in soft matrix and SMA inclusions.
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Appendix A. Derivation of the concentration tensor by the self-consistent approach

Under the small strain hypothesis, the governing equations are:

the local constitutive equation

_s ij�r� � lijkl�r�_eep
kl �r� �A1�

where _s�r� is the local stress rate, l�r� the local tangent modulus and _eep�r� the elastoplastic strain rate
which consists of the elastic part _ee�r� and the plastic part _ep�r�.

Kinematics relations

_eij�r� � 1

2

�
vj,i�r� � vj,i�r�

	 �A2�

where _e �r� is the total strain rate and vi the particle velocity. With small strain hypothesis, it follows that

_eij�r� � _eep
ij �r� � _e�ij�r� �A3�

_e��r� is the eigen strain rate due to martensitic phase transformation in SMA and etc.

Quasi-static equilibrium equation (no body forces)

_sij, j�r� � 0 �A4�
From the constitutive relation (A1) and the decomposition (A3) of the total strain, eqn (A4) is
equivalent to�

lijkl�r�
ÿ
_ekl�r� ÿ _e�kl�r�

��
, j
� 0 �A5�

Using the usual symmetries of l�r�, one can write eqn (A5) as�
lijkl�r�

ÿ
vk,l�r� ÿ _e�kl�r�

��
, j
� 0 �A6�

Another form of eqn (A6) can be obtained by introducing a reference homogeneous medium with
tangent modulus L0 and which undergoes an uniform eigen strain rate _E

�0
such that

lijkl�r� � L0
ijkl � dlijkl�r� �A7�

_e�ij�r� � _E�0ij � d_e�ij�r� �A8�

where dl�r� and d_e��r� are the corresponding ¯uctuations with respect to the reference homogeneous

medium. Substituting eqns (A7) and (A8) into eqn (A6) and using the property �L0
ijkl

_E
�0
kl �,j � 0, one

obtains

L0
ijklvk,lj�r� �

h
dlijkl�r�_eep

kl �r� ÿ L0
ijkld_e�kl�r�

i
, j
� 0 �A9�

which is equivalent to the Lame equations of homogeneous non-linear problem with body force rate

_f i�r� �
h
dlijkl�r�_eep

kl �r� ÿ L0
ijkld_e�kl�r�

i
, j

�A10�
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eqn (A9) can be transformed into an integral equation using the Green tensor G 0 of an homogeneous
in®nite medium with tangent modulus L0 de®ned by

L0
ijklG

0
jn,ik
�rÿ r 0 � � dlnd�rÿ r 0 � � 0 �A11�

After some algebra calculations, one gets

vm,n�r� � v0m,n �
�
V 0
G0

mj,in
�rÿ r 0 �

h
dlijkl�r 0 �_e ep

kl
�r 0 � ÿ L0

ijkld_e�kl�r 0 �
i

dV 0 �A12�

From eqn (A2), one obtains the local strain rate

_e ij�r� � _Eij ÿ
�
V 0
G0
ijkl
�rÿ r 0 ��dlklmn�r 0 �_e ep

mn
�r 0 � ÿ L0

klmnd_e�mn
�r 0 �� dV 0 �A13�

where G0 is the modi®ed Green tensor de®ned by

G0
ijkl
�rÿ r 0 � � ÿ1

2

h
G0

ki,jl
�rÿ r 0 � � G0

li,jk
�rÿ r 0 �

i
�A14�

which can be decomposed into a local Gl and a non local part Gnl such that

G0
ijkl
�rÿ r 0 � � Gl

ijkld�rÿ r 0 � � Gnl
ijkl
�rÿ r 0 � �A15�

with eqn (A15), eqn (A13) becomes

_e ij�r� � _Eij ÿ Gl
ijkl�r�

�
dlklmn�r�_e ep

mn�r� ÿ L0
klmnd_e�mn�r�

�ÿ �
V 0
Gnl
ijkl
�rÿ r 0 �Fkl�r 0 � dV 0 �A16�

where

Fkl�r� � dlklmn�r�_e ep
mn�r� ÿ L0

klmnd_e�mn�r� �A17�

In general the integral term in eqn (A16) is very di�cult to calculate due to the ¯uctuation of the ®eld
F�r�. The original idea of the self-consistent scheme is to choose the reference medium, de®ned by L0

and _E�0, so that the mean value of F�r� over V is zero. In other words, this allows neglecting the
integral term in eqn (A16) compared with the local term. That is�

V

�
dlklmn�r�_e ep

mn�r� ÿ L0
klmnd_e�mn�r�

�
dV � 0 �A18�

or �
V

hÿ
lklmn�r� ÿ L0

klmn

�
_e ep
mn�r� ÿ L0

klmn

�
_e�mn�r� ÿ _E

�0
mn

�i
dV � 0 �A19�

Using the fact that

ÇS � 1

V

�
V

_s �r� dV and _E � 1

V

�
V

_e �r� dV �A20�

eqn (A19) is equivalent to
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ÇS ij � L0
ijkl

�
_Ekl ÿ _E

�0
kl

�
�A21�

Since the overall behavior of the composite is given by

ÇS ij � Lijkl

�
_Ekl ÿ _E

�
kl

�
�A22�

We see that the self-consistent approximation requires to choose L0 and _E�0 so that L0 � L and
_E�0= _E�. Under such conditions, eqn (A16) becomes

_eij�r� � _Eij ÿ Gl
ijkl�r�

�
dlklmn�r�_e ep

mn�r� ÿ Lklmnd_e�mn�r�
� �A23�

where

dl�r� � l�r� ÿ L �A24�

d_e��r� � _e��r� ÿ _E
� �A25�

and the local part of the modi®ed Green tensor Gl is related to the usual Eshelby tensor Sijkl through
the following relation

Gl
ijkl�r� � Sijmn�r�Lÿ1mnkl �A26�

eqn (A23) can be written formally as the form of eqn (A13)

_eij�r� � Aijkl�r� _Ekl � _aij�r� �A27�

from which the concentration tensors A�r� and _aij�r� can be deduced as

Aijkl�r� �
h
Iijkl � Sijmn�r�Lÿ1mnpqdlpqkl�r�

iÿ1 �A28�

_aij�r� � Aijkl�r�Sklmn�r�Lÿ1mnpq

h
lpqrs�r�_e�rs�r� ÿ Lpqrs

_E
�
rs

i
�A29�

From eqns (A28) and (A29) the average strain concentration tensors are easily obtained as



Aijkl�r�

�
V I �

�h
Iijkl � Sijmn�r�Lÿ1mnpq

�
lIpqkl ÿ Lpqkl

�iÿ1�
V I

�A30�



Aijkl�r�

�
VM �

�h
Iijkl � Sijmn�r�Lÿ1mnpq

�
lMpqkl ÿ Lpqkl

�iÿ1�
VM

�A31�



aij�r�

�
V I �

D
Aijkl�r�Sklmn�r�Lÿ1mnpq

h
l I
pqrs_e

�
rs�r� ÿ Lpqrs

_E
�
rs

iE
V I

�A32�



aij�r�

�
VM � ÿ



Aijkl�r�Sklmn�r�

�
VM

_E
�
mn �A33�
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